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Abstract

The present paper addresses the issue of mixed convection from a small heated sphere in assisting and opposing flow

configurations. The sphere is suspended in an electrodynamic chamber (EDC), where it is heated by a focused laser

beam up to several hundred degrees above room temperature. As a result, free convection is induced from the sphere,

with the Grashof number smaller than 0.02. A vertical forced flow is then applied and gradually increased in a quasi-

static manner. The forced flow velocities are in the range 0–0.1 m/s, providing very low particle Reynolds numbers,

usually less than 0.5. The effects of the free convection on the drag force experienced by the particle, and of the forced

flow on the free convection are assessed quantitatively, measuring continuously the vertical forces experienced by the

sphere. A similarity law developed in the previous study is successfully applied to determine the behavior of the drag

force at various particle heating levels. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Heat transfer from- or to- a body of spherical or near

spherical shape is a problem of great practical impor-

tance. It arises in such important industrial applications

as fuel spray and coal combustion, fluidized beds, dry-

ing, particulate technologies, and many others in which

small particles are involved. As discussed in Part I of this

study [1], the regime of heat transfer may be dominated

by the free convection, by the forced convection, or

represent comparable effects of both. It is quite common

to describe the magnitude of free convection in terms of

Grashof or Rayleigh numbers. As for the forced flow,

the common parameter used for the analysis is the

Reynolds number.

The flow associated with free convection is in the

vertical direction, while the forced flow may have an

arbitrary direction. Thus, it is common to study the

mixed convection analyzing three basic cases:

1. ‘‘assisting’’, where the direction of the forced flow co-

incides with that of the free convection flow;

2. ‘‘opposing’’, where the direction of the forced flow is

opposite to that of the free convection flow;

3. ‘‘crossing’’, where the direction of the forced flow is

normal to that of the free convection flow.

While free convection from a sphere, including that

at low Grashof numbers, was studied quite extensively

in the past analytically [2–4], numerically [5,6] (see the

book by Gebhart et al. [7] for a summary), and experi-

mentally [8], the existing results for mixed convection are

rather limited, especially for small bodies where the
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Reynolds and Grashof numbers are small. A pioneering

experimental work on the mixed-convection heat trans-

fer from a sphere in cross-flow was performed by Yuge

[9]. Hieber and Gebhart [10] studied analytically mixed

convection in assisting and opposing flows. Correlations

were proposed [11] for the Nusselt number in the region

where 1 < Grp < 105, 3:5 < Rep < 5:9� 105, corre-
sponding to the results of Yuge [9].

The present study deals with the assisting and op-

posing flow cases of mixed convection, shown sche-

matically in Fig. 1. When the forced flow is weak, the

free convection dominates. When the forced flow is

strong enough, it eliminates the free convection, and the

flow around the hot sphere becomes similar to that

around a cold one.

The cross-flow regime of mixed convection has been

extensively studied in Part I of the present investigation

[1]. The experimental method was based on a novel

technique developed by the authors for the study of

various physical phenomena related to a single small

heated particle levitated in an electrodynamic chamber

(EDC) [1,12,13]. It has been shown both qualitatively

and quantitatively how the free and forced convection

interact when one of them dominates over the other, and

when there are comparative contributions of both. A

power law has been established for generalization of the

results concerning both the hydrodynamic drag force

acting on a heated particle, and the force resulting from

the free convection flow around the particle.

In the present work, both the assisting and the op-

posing cases of mixed convection are investigated by the

same method. The regimes predominated by free and

forced convection are considered along with the regimes

where the contributions from free and forced convection

are comparable to each other.

2. Experimental method

The experimental system and measurement proce-

dure has been described in detail in the past [1,12,13],

and only a brief description appears here.

A charged particle can be levitated by an electric field

inside the EDC. The design of the experimental appa-

ratus enables to balance various external forces (weight,

drag, photophoresis) by the electric field that, in turn,

can be directly measured.

When only gravity, which is directed downwards, is

applied, the vertical electric force balances the force of

gravity, mg. When a focused laser beam irradiates the

particle, free convection is generated, producing the

upward directed force, Ffc, because the particle is hotter
than its surroundings. When a forced flow is applied in

the vertical direction, it exerts the drag force, Fd, on the
particle. Thus, in a general case of assisting/opposing

mixed convection, the electric field balances a combi-

Nomenclature

Bi Biot number ð¼ hd=kpÞ
d particle diameter (m)

F force (N)

g gravitational acceleration ðm=s2Þ
Gr Grashof number ð¼ gb½Tp � Tcold�d3=m2Þ
k thermal conductivity (W/m K)

Q volume flow rate ðcm3=minÞ
Re Reynolds number ð¼ ud=mÞ
T temperature (K or �C)
u velocity (m/s)

V voltage (V)

z Cartesian coordinate

Greek symbols

b thermal expansion coefficient

ðK�1Þ
l dynamic viscosity ðkg=m sÞ
m kinematic viscosity ðm2=sÞ
q density ðkg=m3Þ

Subscripts

cold surroundings

f film

d drag

g gas

p particle

1 ambient

Fig. 1. Mixed convection from a heated sphere in the assisting

and opposing flows.
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nation of gravity and the contributions from free and

forced convection. Unlike the gravity, these contribu-

tions cannot be separated, as discussed below.

It is important to note that while the experimental

set-up is generally the same as used in Part I, the EDC

had to be modified since it was originally designed for a

horizontal forced flow only. The new design of the

chamber made the flow in both directions along the

vertical z-axis possible.

As in Part I, we use smooth spherical glassy-carbon

particles, in the size range 80–105 lm in diameter, be-
cause of their strong chemical resistivity to oxidation at

the operating temperature range (300–600 K in the

present work).

A typical experiment both for the assisting and op-

posing regimes is carried out in the following way: a

particle is charged and levitated in the EDC to a fixed

position. Its weight is balanced by the electric field in the

z-direction. Then, the nitrogen flow is started. The flow

rate is increased very slowly, providing a quasi-static

process. The increasing drag force exerted on the particle

is balanced by the electric field in the z-direction. It is

important to note that the EDC controller maintains the

particle at a fixed position regardless of the flow rate

level. Thus, a dependence of the force on the flow rate is

obtained first for an unheated particle.

Then, the particle is heated, at a zero forced flow, by

a focused CO2 laser beam to a certain temperature level,

depending on the applied laser power. The heating

causes free convection around the particle that ‘‘reduc-

es’’ the particle weight. Accordingly, the electric force in

the z-direction is adjusted automatically to balance the

force of free convection. Then, the nitrogen flow is

started and increased slowly, while the heating level is

kept constant, and the force experienced by the heated

particle is obtained.

3. Results and discussion

3.1. Raw experimental data

Typical raw experimental results are shown in Figs. 2

and 3 for the assisting and opposing regimes, respec-

tively. The results are presented for a typical 80 lm
particle as measured in the experiments, i.e. voltage

versus volume flow rate, for different laser power values.

As in the previous study, special care was given to high

resolution with respect to the flow rate, and each curve

presented in the figures contains about two thousand

measured points. In every case, one curve (squares)

represents the results for an unheated particle. The

other curves represent five different heating levels, es-

tablished by applying laser power of: 2, 3, 5, 7, and 9 W.

The flow rate inside the chamber varied from 0 to

100 cm3=min.

Fig. 2 represents the voltage, V z, needed to keep a

particle in the center of the EDC chamber when the

assisting forced flow is imposed in the vertical direction,

from the bottom to the top of the chamber. When the

forced flow is zero, the voltage V z
hot;0 balances the sum of

gravity and free convection for the heated particle, while

the voltage V z
cold;0 balances the gravity alone. Since the

drag exerted by the forced flow is opposite to the grav-

ity, the voltage, V z, decreases as the volume flow rate, Q,

increases, corresponding to an increase in drag force

with flow velocity. This pattern is repeated for any of the

heating levels.

Fig. 2. Assisting flow: the voltage necessary to balance the drag

force in the z-coordinate at different heating levels, as a function

of flow rate: (�) no heating; (	) heating power of 2 W; (M)
heating power of 3 W; (5) heating power of 5 W; (}) heating
power of 7 W; (þ) heating power of 9 W. The arrow indicates
an increase in particle temperature. The same legend applies

also to Figs. 3–10.

Fig. 3. Opposing flow: the voltage necessary to balance the

drag force in the z-coordinate at different heating levels, as a

function of flow rate. The arrow indicates an increase in particle

temperature.
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Fig. 3 shows the voltage, V z, needed to levitate a

particle when the opposing forced flow is imposed in the

vertical direction, from the top to the bottom of the

chamber. For a zero forced flow, the physical picture is,

obviously, the same as in Fig. 2. For a nonzero forced

flow, the drag acts in the same direction as the gravity.

Therefore, the voltage, V z, increases as the volume flow

rate, Q, increases, corresponding to an increase in drag

force with flow velocity. Here, as well, the same pattern

is repeated for any of the heating levels.

Since the same particle is used, the voltages V z
cold;0

should have been identical in Figs. 2 and 3, provided the

charge of the particle is exactly the same. It is, however,

impossible to assign the same charge to a particle in two

different experiments. For this reason, a charge-elimi-

nation procedure, discussed in [12,13], is used in the

analysis.

As the weight of the particle is known, one can in-

troduce the relative vertical force, normalized with the

particle weight, as follows:

Fz
mg

¼ V z

V z
cold;0

: ð1Þ

Moreover, since the weight is constant, it can be sub-

tracted from the vertical force, yielding the hydrody-

namic drag, i.e. the combined contribution of free and

forced convection, as

Fd ¼ Fz � mg; ð2Þ

where the measured voltages are used to obtain the

following relation:

Fd
mg

¼
V z � V z

cold;0

V z
cold;0

: ð3Þ

The ratio V z=V z
cold;0 is measured with experimental un-

certainty smaller than 0.2%.

The normalized hydrodynamic force, Fd=mg, defined
from Eq. (3), is shown in Figs. 4 and 5 for the assisting

and opposing flow regimes, respectively. One can see

from Fig. 4 that for the assisting flow, the hydrodynamic

force is larger for a hotter particle, at any specific forced

flow rate. When the free convection dominates, this

behavior of the force is because the hotter particle causes

a stronger free convection flow around it. Such a be-

havior is also found when the forced convection domi-

nates, since the hydrodynamic force at a fixed flow rate

depends linearly on the viscosity of the gas, which is

larger at higher particle temperatures. As a result, the

curves in Fig. 4 which correspond to different heating

levels follow the same pattern.

Fig. 5 represents the hydrodynamic force acting on

the same particle, as in Fig. 4, but in the opposing flow.

The absolute values of the forces behave in the same way

in the two extreme cases, namely, when the free con-

vection dominates and when the forced convection

dominates, the force for the same flow rate is smaller

when the heating is lower. However, since the directions

of the free and forced flows are opposite, there exists, for

each heating level, a critical forced flow rate at which the

net hydrodynamic force is 0. One can see from the figure

that the curves corresponding to different heating levels

cross one another.

The free convection force in the investigated range of

particle temperatures reaches about 12% of the particle

weight. Note that the maximum drag force experienced

by the particle in our experiments is about 40% of the

particle weight.

3.2. Dimensional analysis

Since the forces acting on a particle are determined

directly from the experimental results, the first step is to

find the ratio of the drag force acting on the heated

particle to the drag force acting on the cold one. This

Fig. 4. Assisting flow: the drag force acting on a heated particle

at different heating levels, as a function of flow rate.

Fig. 5. Opposing flow: the drag force acting on a heated par-

ticle at different heating levels, as a function of flow rate.
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ratio can be expressed directly from the measured volt-

ages in the vertical direction, as follows:

Fd
Fd;cold

¼
V z � V z

cold;0

V z
cold � V z

cold;0

; ð4Þ

where the index ‘‘0’’ stands for zero forced flow. The

results of Eq. (4) are obtained experimentally within

uncertainty smaller than 0.4%.

The results shown in Figs. 6 and 7 are for the as-

sisting and opposing flow configurations, respectively.

Note that the curve for the cold particle is represented

by a straight line which is parallel to the horizontal axis

and crosses the vertical axis at unity.

For the assisting flow, presented in Fig. 6, the curves

corresponding to different heating levels behave similar

to each other. Each curve descends monotonically until

it becomes parallel to the line Fd=Fd;cold ¼ 1. As shown in
Part I of the present study [1], this asymptotic value is

reached when free convection is fully suppressed by the

forced flow. Note that as shown in Fig. 7, the asymptotic

behavior of the opposing flow is similar. This is because

when the free convection is suppressed, there should be

no difference between the assisting, opposing, and

crossing flows.

In order to generalize the experimental results, the

flow rate as measured in the experiments should be first

replaced by the velocity, and then by the Reynolds

number. This procedure is based on the well-known

Stokes relation between the velocity and the drag force

acting on a sphere at low Reynolds numbers,

Rep ¼ udqg=lg < 0:5, under isothermal conditions

FdðT1Þ ¼ 3pdlgðT1Þu; ð5Þ

where lg and qg are the dynamic viscosity and density of
the gas, respectively, d is the particle diameter, u is the
flow velocity when the particle is motionless, and T1 is
the temperature of both the particle and the fluid.

Assuming that the Reynolds numbers in our case are

low, as indeed shown later, Eq. (5) is used for velocity

determination from the drag force. For an unheated

particle, the ratio drag/weight is measured as the ratio

V z
cold=V

z
cold;0. Since for a smooth sphere this ratio is given

by Fd=mg ¼ 18lgu=d2qpg, the velocity is readily calcu-
lated from

u ¼
qpgd

2

18lg

V z
cold

V z
cold;0

; ð6Þ

where qp ¼ 1450 kg=m3 is the density of glassy carbon
particles. Knowing the value of the flow velocity, u, a
corresponding value of the particle Reynolds number,

Rep, is readily calculated. Thus, it becomes possible to
plot the measured forces versus the Reynolds number.

A similar procedure can be used for particle temper-

ature estimation [1,13]. For a heated particle, when the

forced flow dominates but is still in the Stokes regime, the

ratio of forces tends to the ratio of the viscosities,

Fd
Fd;cold

!
lgðTfilmÞ
lgðTcoldÞ

; ð7Þ

where lgðTfilmÞ is the dynamic viscosity of the gas at the
film temperature given by Tfilm ¼ ðTp þ TcoldÞ=2. This is
because when the forced flow dominates, the Stokes

relation can be used in a slightly modified form [13]

Fd ¼ 3pdlgðTfilmÞu: ð8Þ

Hence, if the forces are known, the viscosity at an

elevated temperature, lgðTfilmÞ, can be calculated from
Eq. (7), yielding the film temperature [1,14], and leading

to particle temperature Tp. The accuracy of this proce-
dure has been extensively discussed in the previous

studies [12].

Using this approach, the particle temperature levels

were estimated. The maximum particle temperatures in

the present experiments were 530 and 600 K for the

assisting and opposing regimes, respectively.
Fig. 6. Assisting flow: the hot to cold drag force ratio at dif-

ferent heating levels, as a function of flow rate.

Fig. 7. Opposing flow: the hot to cold drag force ratio at dif-

ferent heating levels, as a function of flow rate.
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Uniformity of particle temperature has been checked

using the Biot number, Bi. From the manufacturer’s

data, thermal conductivity of glassy carbon was corre-

lated as kpðT Þ ¼ 0:817T 0:376 in the range 300–1200 K. It
has been shown in Part I [1] that the Nusselt number was

typically about 2.3, being close to its pure conduction

value. Accordingly, the Biot number for a glassy carbon

particle was about 10�2, indicating that particle tem-

perature in all the experiments was uniform.

As shown above, the temperature levels were esti-

mated for the case where the free convection was fully

suppressed by the forced flow. It has been shown in Part

I of the present study [1] that the estimated values reflect

quite accurately also the temperatures for the free-con-

vection-dominated and intermediate regimes.

It has been also shown in [1] that the film-tempera-

ture Grashof number, Grf ¼ gbfðTp � TcoldÞd3=m2f , where
m is the kinematic viscosity of the gas, and b is the co-
efficient of thermal expansion, is almost the same over

the given range of the particle temperatures. Thus, a

small deviation of the particle temperature from the

estimated value does not have any effect on it. Because

of such behavior of the Grashof number, the charac-

teristic film-temperature Reynolds number, defined from

Ref=Gr
1=2
f ¼ 1, is almost constant.

Since the film-temperature Grashof number, Grf , is
essentially the same in the experiments, it should not be

used for generalization of the results. Instead, as shown

previously [1], the relative temperature difference

ðTp � TcoldÞ=Tcold is suitable for the analysis of the results.
There, it was assumed that at the entire range of

0 < Rep < 0:5, the drag force along the flow direction is
a superposition of two factors, namely, the Stokes-like

drag based on the film temperature, and the additional

force arising from free convection:

Fd ¼ 3pdlgðTfilmÞuþ Fd;free: ð9Þ

Dividing Eq. (9) by Fd;cold ¼ 3pdlgðT1Þu and rearrang-
ing terms, one obtains the contribution of free convec-

tion to the forced-flow drag as

Fd;free
Fd;cold

¼ Fd
Fd;cold

�
lgðTfilmÞ
lgðT1Þ : ð10Þ

Based on this result, a 5/4-power law has been applied in

Part I to the analysis of the drag force as a function of

the particle temperature. It has been shown there that,

for the cross-flow configuration, representation of the

experimental data in the form of ½Fd=Fd;cold � lf=
lcold�=½ðTp � TcoldÞ=Tcold�5=4 versus Recold brought the
points measured for different heating levels to a single

curve.

Since the phenomena of assisting and opposing flows

have essentially the same physical nature as that of the

cross-flow, exactly the same approach is adopted here

for the assisting and opposing configurations. Fig. 8

represents the generalized results for the assisting flow in

the form of ½Fd=Fd;cold � lf=lcold�=½ðTp � TcoldÞ=Tcold�5=4
versus Recold. One can see that all the measured points
tend to form a single curve, notwithstanding the heating

level. The generalized result indicates clearly that the

force acting on a heated particle decreases monotoni-

cally to its asymptotic value determined by the modified

Stokes law, Eq. (6).

Fig. 9 represents the generalized results for the

opposing flow in the form of ½Fd=Fd;cold � lf=lcold�=
½ðTp � TcoldÞ=Tcold�5=4 versus Recold. Once again, all the
measured points tend to form a single curve, notwith-

standing the heating level.

The results of Figs. 8 and 9, along with those pre-

sented in Part I, indicate that a general dependence of

the drag force, acting on a heated sphere, on the hy-

drodynamic and thermal parameters of the system is

feasible. The only parameter not used yet is the angle u
between the directions of the free and forced flows. This

Fig. 8. Assisting flow: the temperature-normalized drag force

ratio, as a function of the ‘‘cold’’ particle Reynolds number.

Fig. 9. Opposing flow: the temperature-normalized drag force

ratio, as a function of the ‘‘cold’’ particle Reynolds number.
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angle determines the differences in the shape of the

generalized curve for different flow configurations.

Inspection of the expression for the dimensionless

temperature used above, ðTp � TcoldÞ=Tcold, shows that it
can be considered as a component of the Grashof

number, when the latter is based on the ambient tem-

perature, T1 ¼ Tcold, rather than on the film temperature
Tfilm. Recall that for an ideal gas, the coefficient of vol-
umetric expansion, b, is the inverse of the absolute gas
temperature. Thus, if the Grashof number is defined

based on the ambient temperature, it attains the fol-

lowing form:

Gr1 ¼ gb1ðTp � TcoldÞd3
m21

¼ ðTp � TcoldÞ
Tcold

gd3

m21
: ð11Þ

Since the term gd3=m21 is a constant, the expression
ðTp � TcoldÞ=Tcold is, essentially, analogous to the ambi-
ent-temperature Grashof number, and the latter can

replace the former in the data generalization. As a result,

the generalized force would be expressed as ½Fd=
Fd;cold � lf=lcold�=Gr5=41 versus Re1. The latter form is
probably preferable as it includes the basic dimension-

less groups explicitly. Note that although both the

Reynolds and Grashof numbers are based on the

ambient temperature, the influence of particle heating

expresses itself in the viscosity.

As mentioned above, the classical work by Hieber

and Gebhart [10] presents a unique attempt to solve the

problem of creeping-flow mixed convection analytically.

They considered the assisting and opposing configura-

tions for Gr ¼ oðRe2Þ as Re ! 0, and found the addi-
tional drag, related to the free convection, in terms of

the small parameter e ¼ Gr=Re2 ¼ oð1Þ, and the Rey-
nolds number Re.

Since the ratio of the overall drag acting on a heated

particle to that acting on the cold one under the otherwise

same conditions equals, in our notation, to Fd=Fd;cold, the
latter expression is plotted in Fig. 10 versus the particle

Reynolds number. It is important to note that we assume

that the drag coefficient found by Hieber and Gebhart

[10] tends asymptotically to its value for a hot particle

with suppressed free convection, i.e. to the value corre-

sponding to the drag force determined by Eq. (8).

Our experimental data for the assisting flow are rep-

resented for the different heating levels. The analytical

prediction of Hieber and Gebhart [10] is shown for the

estimated minimum and maximum Grashof numbers of

the present experiments, i.e. Gr1 ¼ 0:006 and Gr1 ¼
0:016, respectively. These values of the Grashof number
correspond to the lower and upper sets of the experi-

mental results for the assisting flow. Note that both the

Grashof and Reynolds numbers were defined by Hieber

and Gebhart [10] using particle radius rather than its

diameter. Here, their expression has been transformed to

be consistent with the definitions of the present study.

One can see that at the relatively large Reynolds

numbers, the asymptotic solution agrees quite well with

the experimental data. However, at the small values of

Re the asymptotic solution deviates considerably from

the experimental results.

Recall that the solution of Hieber and Gebhart [10] is

valid when Gr=Re2 ¼ oð1Þ. However, it should be noted
that for Gr1 ¼ 0:006 and Gr1 ¼ 0:016, the characteris-
tic ambient-temperature Reynolds number, defined from

Re1=Gr1=21 ¼ 1, is as large as about 0.055 and 0.09,
respectively, when calculated using their radius-based

definitions for Re and Gr. Furthermore, if the condition

is rewritten as Gr=Re2 < 0:1, the Reynolds number
should exceed 0.18 and 0.29, respectively, to define the

regions in which the asymptotic solution is valid. For

this reason, the higher the Grashof number, the wider

(starting from zero) the range of the Reynolds numbers

in which the asymptotic solution cannot be used for an

accurate prediction of the experimental results.

4. Closure

The present investigation provides novel qualitative

and quantitative results concerning the complex issue of

mixed convection in the assisting and opposing flow

around a sphere. It is shown how the free and forced

convection interact both when one of them dominates

over the other, and when there are comparative contri-

butions of both.

Comparison with analytical predictions from the lit-

erature has been performed, and the limitations of the

existing asymptotic model were discussed.

A power law, established in the previous investiga-

tion for the cross-flow, has been successfully applied to

the assisting and opposing configurations. Thus, the

generalization of all three basic flow configurations in

Fig. 10. Comparison of the experimental results to theoretical

predictions by Hieber and Gebhart [10]. The theoretical pre-

dictions are shown by solid lines for different Grashof numbers.
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mixed convection is achieved. This generalization relates

the hydrodynamic drag force, acting on a heated sphere,

to the Grashof and Reynolds numbers.
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